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Abstract

The package refpriors allows one to construct Bayesian reference posterior
distributions for cross section measurements and provides utilities to summarize
these distributions via credibility intervals and Bayes factors. We provide a brief
description of the C++ classes contained in this package and describe their use.

1 Introduction

This document describes the classes provided in the package refpriors and explains
how to use them. The code implements the methods for computing Bayesian reference
posteriors for cross section measurements discussed in Ref. [1], and includes examples
illustrating their application. The document is structured as follows. Section 2 provides
a brief description of the different classes and examples of their usage. Section 3 explains
how to set up the package. Details on the algorithms used for calculating reference
posteriors as well as examples with results are discussed in Sections 4 and 5. Our
conclusions are contained in Section 6.

2 Description of the package

The refpriors package consists of the following main sub-directories:

• src: This contains a set of classes coded in C++ .

• include: This contains the headers for the above classes.

• test: This contains representative examples that illustrate the use of the above
classes. Any additional code specific to a user’s analysis can be added here (we
call this the “user-code”).

1luc.demortier@mail.rockefeller.edu, sjain@fnal.gov, harry@hep.fsu.edu
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• lib: This contains the shared library built from the code in the src directory.

• bin: This contains the executables for the code in the test directory.

• doc: This area contains the files for this document.

2.1 Classes

We describe below briefly the different classes available in the src directory. The test
directory contains examples of the use of some of these classes.

• src/ReferencePrior: This class implements José Bernardo’s numerical algorithm
for computing reference priors [2]. It can be used with any likelihood function,
binned or unbinned, that depends on a single parameter. See Section 4 for a
description.

• src/JeffreysPrior: This class implements Jeffreys’ rule for calculating priors for
any likelihood function that depends on a single parameter. As explained in
Section 4, Jeffreys’ rule coincides with the reference prior when some regularity
conditions are met.

• src/Binomial: This class defines the binomial probability mass function (PMF),
see Section 4.1 for details. It serves to illustrate the methods for defining a PMF
that are needed to interface properly with ReferencePrior, JeffreysPrior, and
other classes. For example, ReferencePrior requires a method to sample data
from the PMF and a method to return a likelihood value given observed data
and a value for the parameter of interest.

• src/Exponential: This class defines the exponential probability density function
(PDF).

• src/Poisson: This class defines the Poisson PMF.

• src/PoissonGammaModel: This class implements the multiple-bin Poisson-gamma
model, so called because it combines a multiple-bin Poisson likelihood with
gamma priors. The likelihood is a product of Poisson probability mass func-
tions over one or more bins. In each bin i, the Poisson mean depends on the
signal cross section σ, the bin-dependent background magnitude µi, and the bin-
dependent product εi of the signal acceptance and the integrated luminosity. We
sometimes refer to εi as the effective integrated luminosity. The conditional prior
π(~ε, ~µ|σ) for the nuisance parameters µi and εi is a product of gamma densities.
This model is used with the BAT package [3] to calculate the Method 1 reference
prior described in Ref. [1] (see Section 5 for details).

• src/MarginalizedPoissonGamma: This class implements the Poisson-gamma model
marginalized with respect to the nuisance parameters ~µ and ~ε. It is used in
the calculation of the reference prior for a cross section measurement using the
Method 2 approach described in Ref. [1]. In this method the likelihood is first
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integrated over the nuisance parameters, and Jeffreys’ rule is then applied to the
result (see Section 4 for details).

• src/SingleBinPoissonGammaMethod2Prior: This class computes an analytical
expression for Jeffreys’ prior for the single-bin Poisson-gamma model marginal-
ized with respect to the nuisance parameters µ and ε. The reference prior coin-
cides with Jeffreys’ prior for this model.

• src/SingleBinMarginalizedPoissonGammaB: Here we consider a slightly modified
single-bin Poisson-gamma model, in which the likelihood is Poisson with mean
s + µ instead of εσ + µ; the parameter s is the signal magnitude. This class
marginalizes this modified Poisson-gamma model with respect to the background
magnitude µ (see Appendix B). The modified Poisson-gamma model could be
useful in a “model-independent” counting experiment where one does not wish
to commit to a particular signal model, and hence to a signal-model-dependent
value of ε.

• src/SingleBinPoissonGammaBMethod2Prior: This class computes an analytical
expression for Jeffreys’ prior for the single-bin modified Poisson-gamma model
marginalized with respect to the parameter µ. The reference prior coincides with
Jeffreys’ prior for this model.

• src/SingleBinPoissonGammaMethod1UpperLimit: Computes upper limits on the
signal cross section for the single-bin Poisson-gamma model, using the analytical
formula for the Method-1 posterior given at the end of section III.A.1 in Ref. [1].
This class can also be loaded directly in root. Thus for example, if one has an
expected background of 0.23±0.05, an effective integrated luminosity of 2.0±0.4,
and sees 4 events, the 95% credibility level (C.L.) upper limit can be obtained by
invoking root and typing:

.L SingleBinPoissonGammaMethod1UpperLimit.cc

SingleBinPoissonGammaMethod1UpperLimit(2.0,0.4,0.23,0.05,4,0.95);

This should result in an upper limit of 4.52724, in the inverse of the units used
to specify the effective integrated luminosity.

• src/Posterior: This class computes the Bayesian posterior density, given the prior
as one of the inputs.

• src/CentralIntervals: Given the posterior density at given θ values, this class
calculates the central interval at y C.L., where y is specified by the user.

• src/Coverage: Given a probability density function, a table of n observed counts,
and C.L. intervals, this class calculates the coverage probability for a specified
true value of the parameter of interest. Note this class is currently not used in any
of the examples available in the test directory, but is provided as an additional
utility.
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• src/BayesFactor: Given the likelihoods for the background-only and signal + back-
ground hypotheses, and a predicted value and uncertainty for the signal, this
class computes the Bayes factor in favor of the signal hypothesis and against
the background-only hypothesis. A log-normal distribution is used for the signal
prior. A comprehensive review of the history of Bayes factors, their interpreta-
tion, and applications to various problems is provided in Ref. [4].

• src/SingleBinKullbackLeibler: Given two single-bin probability mass functions
p(k | θ) and q(k | φ) (that is, discrete distributions), each with a single, non-
negative parameter of interest, θ and φ respectively, this class computes the
Kullback-Leibler (K-L) divergence between them. The K-L divergence, an in-
variant, nonnegative measure of the separation between two distributions, is zero
if and only if the latter are identical. For discrete distributions, the K-L diver-
gence is given by

κ(φ | θ) =
∞∑

k=0

p(k | θ) ln
p(k | θ)
q(k |φ)

.

For fully specified models, the K-L divergence is simply the expected log-likelihood
ratio in favor of the model that generated the data [5]. More generally, it is an
expected log-Bayes factor. If p and q are Poisson distributions with means θ and
φ respectively, the K-L divergence is given by κ(φ | θ) = −θ+φ+θ ln(θ/φ), which,
writing φ = µ and θ = s+µ, becomes κ(µ | s+µ) = −s+(s+µ) ln(1+ s/µ). We
can get some insight into the meaning of the K-L divergence by considering the
limit in which the signal to background ratio is small, s/µ << 1. In this limit

κ(µ | s + µ) = −s + (s + µ) ln
(
1 +

s

µ

)
≈ −s + (s + µ)

[ s

µ
− 1

2

s2

µ2
+ · · ·

]
≈ 1

2

s2

µ
,

that is,
√

2κ(µ | s + µ) reduces to s/
√

µ, a commonly used measure of signal
“significance” 2.

• src/SingleBinDiscrepancy: Given two single-bin probability mass functions p and
q, each with a single parameter of interest, this class computes the expected
discrepancy

δ(φ, n) =

∫ ∞

0

d(φ, θ) p(θ |n) dθ =
1

p(n)

∫ ∞

0

d(φ, θ) p(n | θ) πR(θ) dθ,

between them, where d(φ, θ) = min[κ(φ | θ), κ(θ |φ)] is called the intrinsic dis-
crepancy [2], p(n) =

∫∞
0

p(n | θ) πR(θ) dθ, and πR(θ) is the reference prior for the
parameter of interest θ. This measure of discrepancy is invariant with respect to
one-to-one transformations of the model parameters.

• src/Utils: This class contains some utilities used in the other classes.

• src/Plot: This class contains methods for making general purpose plots in ROOT.

2In this limit, the K-L divergence is symmetrical in its arguments, that is,
√

2κ(µ | s + µ) =√
2κ(s + µ |µ). In this case, the quantity s/

√
µ can be interpreted as a distance between the two

models in the space of models.
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2.2 Test programs

We describe briefly the test programs (“user-code”) in the test directory.

• test/testBinomial.cc: This is user code for testing the reference prior algorithm
on a binomial likelihood. It produces the plot Binomial.eps (Figure 1, left panel),
see section 4.1 for details.

• test/testExponential.cc: This is user code for testing the reference prior algorithm
on an exponential likelihood. It produces the plot Exponential.eps (Figure 1,
middle panel), see section 4.1 for details.

• test/testPoisson.cc: This is user code for testing the reference prior algorithm on
a Poisson likelihood. It produces the plot Poisson.eps (Figure 1, right panel), see
section 4.1 for details.

• test/testPGammaMethod2.cc: This is user code for testing the reference prior
algorithm on a marginalized Poisson-gamma likelihood, following Method 2 in
Ref. [1]. It produces the plots PGamma.eps (left panel of Figure 2) and PGam-
maJeffreysPrior.eps (right panel of the same figure), see section 5.1 for details.

• test/testPGammaMethod1Method2.cc: This is user code that shows how to calcu-
late the reference priors using Methods 1 and 2 from Ref. [1]. It also demonstrates
the use of the priors in obtaining posterior densities, as well as central intervals
and Bayes factors. It produces the plots testBAT.eps, testPGamma12Prior.eps,
and testPGamma12Posterior.eps, all shown in Figure 3, see section 5.2 for details.

• test/testPGammaBMethod2.cc: This is user code for testing the Method-2 ref-
erence prior algorithm on a marginalized Poisson-gamma likelihood without the
effective integrated luminosity parameter (see Appendix B). It produces the plot
PGammaB.eps (Figure 4).

• test/testDiscrepancy.cc: User code for testing the class SingleBinDiscrepancy.

• test/KullbackLeibler.cc: User code for testing the class SingleBinKullbackLeibler.

3 How to set up the package

The refpriors package uses the root [6] and bat [3] utilities. Hence users must add
these two packages to their working directory prior to using the refpriors package,
and specify their paths appropriately. The root and bat packages can be down-
loaded from http://root.cern.ch/drupal/ and http://www.mppmu.mpg.de/bat re-
spectively. For testing our implementation of the refpriors code we have used the
following versions of root and bat:

• root: 5.22/00 (gcc 3.4)

• bat: 0.3.2.

http://root.cern.ch/drupal/
http://www.mppmu.mpg.de/bat
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Once the paths for the root and bat utilities have been appropriately set, the
refpriors code may be compiled and run from the main refpriors directory as
follows:

• To compile, type: make.
This will create the shared library of all code in the “lib” directory, and the
executables of all the user-code in the “bin” directory.

• To run a specific user-code, for example “test/testBinomial.cpp”,
type: ./bin/testBinomial.

Results from the examples are created in the main refpriors directory.

4 Reference priors for one-parameter models

Consider a one-parameter probability density function p(x | θ), where x is the dataset
and θ an unknown parameter. The reference prior for θ is then defined as [2]:

πR(θ) = lim
k→∞

πk(θ)

πk(θ0)
,

with

πk(θ) = exp

{∫
p(x(k) | θ) ln

[
p(x(k) | θ) h(θ)∫
p(x(k) | θ) h(θ) dθ

]
dx(k)

}
, (4.1)

where θ0 is an arbitrary fixed value of θ, h(θ) is any continuous, strictly positive func-
tion, such as h(θ) = 1, and p(x(k) | θ) =

∏k
i=1 p(xi | θ) is the likelihood for k independent

observations. In general, the analytical derivation of reference priors can be extremely
challenging. However, as shown by Bernardo [5], (4.1) is readily amenable to numerical
integration using the following pseudo-code. Let θ be a parameter value at which it is
desired to evaluate the reference prior πR(θ):

• Starting values:
Choose a moderate value for k (to simulate the asymptotic posterior).
Choose an arbitrary positive function h(θ), say h(θ) = 1.
Choose the number M of samples to be simulated.

• For the given value of θ:
1 Set P = 0
2 Repeat the following steps, for m = 1, . . . ,M :
3 Generate a random sample x1, . . . , xk of size k from the PDF p(x | θ)
4 Evaluate Qm =

∫ p(x(k) | θ′) h(θ′) dθ′

p(x(k) | θ) h(θ)

5 Set P = P + ln Qm

6 Set πR(θ) = exp(−P/M).

The one-dimensional integration at line 4 is done numerically.
A further useful result mentioned in Ref. [1] is that, when certain regularity condi-

tions are met — essentially those that guarantee asymptotic normality of the posterior
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— the reference prior for models with one continuous parameter reduces to the well-
known Jeffreys prior [7]:

πJ(θ) =

√
E
[
− d2

dθ2
ln p(x | θ)

]
, (4.2)

where the expectation is taken with respect to the sampling model p(x | θ). For simple
models it may be possible to compute Jeffreys’ prior exactly, but with increasing model
complexity an analytical calculation may not be feasible. In such cases, (4.2) can be
numerically approximated:

πJ(θ) ≈

√√√√− 1

N

N∑
i=1

d2

dθ2
ln p(xi | θ). (4.3)

Here, {xi} is a sample of size N generated from p(x|θ). If the 2nd order derivatives
are too cumbersome to calculate analytically, they can be computed numerically, as
explained in Appendix A.

4.1 Examples

We consider three simple models for which the reference prior coincides with Jeffreys’
prior and is known in closed form:

• Binomial: The available data sample consists of n Bernoulli trials (with n fixed
in advance), of which x are successes. The model is Binomial:

p(x |n, θ) =

(
n

x

)
θx (1− θ)n−x, for x = 0, . . . , n and 0 < θ < 1. (4.4)

The Jeffreys’ prior for this model is known exactly:

π(θ) =
√

θ−1 (1− θ)−1. (4.5)

• Exponential: The data follow an exponential PDF:

p(x | θ) = θ e−θx, for x > 0 and θ > 0. (4.6)

The Jeffreys’ prior for this model is:

π(θ) =
1

θ
. (4.7)

• Poisson: Here the data follow a Poisson PDF:

p(x | θ) =
e−θ θx

x!
, for x > 0 and θ > 0. (4.8)

The Jeffreys’ prior for this model is:

π(θ) =
1√
θ
. (4.9)
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For each of the above models we compute the reference prior using the numerical
reference algorithm described in Section 4, and compare it to the appropriate analytical
expression for Jeffreys’ prior given above, as well as to a numerical approximation based
on equation (4.3). Figure 1 shows the results — we see excellent agreement between
the different calculations for all three models.
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Figure 1: Application of Bernardo’s Monte Carlo algorithm to the calculation of refer-
ence priors for binomial (left), exponential (middle), and Poisson (right) models. For
the binomial model the population size is set to n = 10. In each plot, the analytical for-
mula for Jeffreys’ prior (solid line) is compared with Bernardo’s numerical integration
algorithm (circles) and with a numerical differentiation algorithm based on eq. (4.3)
(triangles).

5 Reference priors for models with nuisance param-

eters

The construction of reference priors for one-parameter models can be generalized to
models with nuisance parameters about which partial information is available. We first
look at the “single-bin” or “single-channel” case, and then generalize to the multiple-bin
case.

5.1 Single-bin models

A very common model for high energy physics measurements is the following [1]. A
number of events N is observed by some apparatus, and it is assumed that N is Poisson
distributed with mean count ε σ + µ, where σ is the rate of a physics signal process,
typically the cross section, which we detect with an effective integrated luminosity ε —
that is, the integrated luminosity scaled by the signal efficiency, and µ is a background
contamination. Thus, σ is the parameter of interest, whereas ε and µ are nuisance
parameters for which we usually have partial information. For physical reasons none
of these three parameters can be negative. We write the likelihood for this model as

p(n|σ, ε, µ) =
(εσ + µ)n

n!
e−εσ−µ with 0 ≤ σ < ∞ and 0 < ε, µ < ∞. (5.1)
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Information about ε and µ usually comes from a variety of sources, such as auxiliary
measurements, Monte Carlo simulations, theoretical calculations, and evidence-based
beliefs (for example, some sources of background contributing to µ may be deemed
small enough to ignore, and some physics effects on ε, such as gluon radiation, may be
believed to be well enough reproduced by the simulation to be reliable “within a factor
of 2”). It is therefore natural to represent that information by an evidence-based prior.
Here we will assume that ε and µ are independent of σ and that their prior factorizes
as a product of two gamma densities:

π(ε, µ |σ) = π(ε, µ) =
a(aε)x−1/2 e−aε

Γ(x + 1/2)

b(bµ)y−1/2 e−bµ

Γ(y + 1/2)
, (5.2)

where a, b, x, and y are known constants.
For this model, there are two plausible ways to calculate the reference prior for σ

while incorporating the effect of nuisance parameters:

Method 1: Compute the conditional reference prior πR(σ | ε, µ) for the interest param-
eter σ given a fixed value of (ε, µ); the full prior is then π(σ, ε, µ) = πR(σ | ε, µ) π(ε, µ);

Method 2: Marginalize the probability model p(n|σ, ε, µ) with respect to (ε, µ) in
order to obtain p(n|σ) =

∫
p(n|σ, ε, µ) π(ε, µ|σ) dε dµ, and compute the refer-

ence prior πR(σ) for the marginalized model; the full prior is then π(σ, ε, µ) =
π(ε, µ |σ) πR(σ).

The advantage of Method 1 is that it produces a reference prior that does not need to
be recomputed every time the form of the evidence-based prior is changed. Method 2,
on the other hand, has the advantage that it reduces the problem to that of finding
the reference prior for a one-parameter model, allowing the user to apply the methods
of section 4. This approach is illustrated in Figure 2, where Method 2 is applied to
the Poisson-gamma model with x = y = a = b = 25. The left panel compares the
result of Bernardo’s reference algorithm, a numerical evaluation of Jeffreys’ prior, and
an analytical calculation described in section III.A.2 of Ref. [1]. Good agreement is
observed. The right panel compares two numerical calculations of Jeffreys’ prior. The
one labeled (1) is based on equation (4.3) (with ni replacing xi and σ replacing θ),
whereas the one labeled (2) uses:

πJ(σ) =

√√√√E

{[
d

dσ
ln p(n |σ)

]2
}

, ≈

√√√√ 1

N

N∑
i=1

[
d

dσ
ln p(ni |σ)

]2

, (5.3)

where the ni are generated from p(n |σ). The equality of these two expressions for
Jeffreys’ prior is derived in Ref. [8], among others.

5.2 Multiple-bin models

The multiple-bin model can be obtained by considering M replications of the single-bin
one. The likelihood is:

p(~n |σ,~ε, ~µ) =
M∏
i=1

(εiσ + µi)
ni

ni!
e−εiσ−µi , (5.4)
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Figure 2: Left: Method-2 calculation of the reference prior for the Poisson-gamma
model using Bernardo’s algorithm (circles), a numerical approximation of Jeffreys’
prior (triangles), and an analytical formula (solid line). Right: comparison of two
numerical calculations of Jeffreys’ prior for the same model (see text).

and the evidence-based prior is:

π(~ε, ~µ|σ) = π(~ε, ~µ) =
M∏
i=1

ai(aiεi)
xi−1/2 e−aiεi

Γ(xi + 1/2)

bi(biµi)
yi−1/2 e−biµi

Γ(yi + 1/2)
. (5.5)

The generalization of Methods 1 and 2 to the multiple-bin model is straightforward.
Numerical techniques for computing the corresponding reference priors are described
next.

For Method 1 the algorithm starts by generating (σ,~ε, ~µ) triplets from the “flat-
prior posterior”, i.e. the posterior obtained by setting π(σ |~ε, ~µ) = 1 (line 3 in the
pseudo-code below); the correct reference prior π(σ |~ε, ~µ) is then computed at lines 4–6
and is used at line 7 to weight the generated σ values so as to produce the reference
posterior:

1 Set ~no to the array of observed event numbers.
2 For i = 1, . . . , I:
3 Generate (σi,~εi, ~µi) from the probability model p(~no |σ,~ε, ~µ) π(~ε, ~µ).
4 For j = 1, . . . , J :
5 Compute the conditional Jeffreys’ prior πJ(σi |~εi, ~µi) for σi, given the

corresponding set of (~εi, ~µi), and using p(~n |σi,~εi, ~µi) for the
probability model.

6 Histogram the σi values generated at line 3, weighting them by
πJ(σi |~εi, ~µi)/p(~no |σi,~εi, ~µi). This yields πR1(σ), the σ-marginal prior.

7 Histogram the σi values generated at line 3, weighting them by
πJ(σi |~εi, ~µi). This yields πR1(σ |~no), the σ-marginal posterior.

Although not required for the calculation of the reference posterior, an approxima-
tion to the reference prior is provided at line 6. By construction this approximation is
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only reliable for σ values in the bulk of the flat-prior posterior. The generation step at
line 3 is done via a Markov chain Monte Carlo (MCMC) procedure [3]. The particular
choice of sampling distribution for the generated set of (σ,~ε, ~µ) is motivated by the
desire to obtain weights with reasonably small variance at steps 6 and 7. However, the
flat-prior posterior p(~n0 |σ,~ε, ~µ) π(~ε, ~µ) is not always proper with respect to (σ,~ε, ~µ).
When M = 1 (single-count model), it is improper if x ≤ 1/2. Propriety can then be
restored by multiplying the flat-prior posterior by ε and correspondingly adjusting the
weights at steps 6 and 7. It may also be noted that if one histograms the σi values
for each i = 1, . . . , I, one obtains the distribution for p(~no |σ). This can be compared
to the exact calculation, which is the same as that derived in (5.8) below, and hence
provides a test for the robustness of the MCMC procedure for generating the parameter
values in line 3 above (see left panel of Fig. 3).
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Figure 3: Calculation of reference posteriors for the single-bin Poisson-gamma model.
Left: verification of the Markov chain Monte Carlo procedure in BAT used for sampling
the set of parameters (σ,~ε, ~µ). Middle: reference priors from Methods 1 and 2. Right:
reference posteriors from Methods 1 and 2; also shown is the posterior for a flat prior.

The algorithm for Method 2 has a simpler structure, since all it does is apply
Jeffreys’ rule to a marginalized likelihood p(~no |σ):

p(~n |σ) =

∫ ∞

0

d~ε

∫ ∞

0

d~µ p(~n |σ,~ε, ~µ) π(~ε, ~µ). (5.6)

If we make the following identifications for the multiple-count model (i = 1, . . . ,M):

A1
i = xi − 1/2,

A2
i = yi − 1/2,

p1
i = σ/ai,

p2
i = 1/bi,

(5.7)

then (5.6) can be written as [9]:

p(~n |σ) =
M∏
i=1

p(ni|σ) =
M∏
i=1

[
n∑

k=0

Ck,1
i Cn−k,2

i

]
, (5.8)
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where

C0,j
i = (1 + pj

i )
−(Aj

i +1),

Cr,j
i =

(
pj

i

1 + pj
i

)(
Aj

i + r

r

)
Cr−1, j

i , (r = 1, . . . , n, j = 1, 2).
(5.9)

The calculation for reference priors in Method 2 does not require random sampling of
the parameters and is done at fixed σ values. For a given σ, the reference prior πR2(σ)
is obtained from a numerical approximation of the Jeffreys’ prior given the probability
model of a marginalized Poisson-Gamma (5.8). The reference posterior is proportional
to the product of p(~no |σ) and πR2(σ), and the normalization with respect to σ must
be determined numerically by requiring

∫
p(σ |~no) dσ = 1.

The above algorithms can, of course, also be applied to single-bin models. This
is illustrated in Figure 3 for the single-bin Poisson-gamma model. The priors and
posteriors obtained using Methods 1 and 2 are shown in the middle and right panels,
respectively. For comparison, the posterior density for a flat prior distribution is also
shown. The jaggedness of the Method 1 prior reflects the fluctuations due to the
MCMC sampling of the parameters. It is more pronounced in regions of σ where the
sampling distribution, shown in the left panel, has low density.

6 Conclusions

We have provided a brief description of the code available in the package refpriors,
and details of representative examples illustrating the use of the code. We hope this
document will allow the user to get started with the available software. Users may add
their own examples in the test directory, and even define new probability models in the
src directory, depending on their particular physics needs.
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Appendix

A Numerical approximation of 2nd order derivatives

If the 2nd derivatives are too cumbersome to be done analytically, they can be computed
numerically, using, for example, the approximation

d2y

dx2
= D(y, h)/h2 − h2

12

d4y

dx4
+©(h4), (A.1)

where the difference operator is defined by D(y, h) = y(x + h) − 2y(x) + y(x − h).
Equation A.1 follows from the Taylor expansions of y(x + h) and y(x− h) about x. If
we neglect the term of ©(h2) we get a formula accurate to that order.

We can get a much more accurate formula by computing Eq. (A.1) with a step size
of h and a coarser one of size 2h

d2y

dx2
= D(y, 2h)/(2h)2 − 4

h2

12

d4y

dx4
+©(h4). (A.2)

The ©(h2) term can be canceled by summing Eqs. (A.1) and (A.2) with weights 4/3
and -1/3, respectively, to arrive at

d2y

dx2
= [4D(y, h)/3−D(y, 2h)/12]/h2 +©(h4), (A.3)

which is accurate to 4th order in h. Note, because the difference formula requires the
computation of y = ln p(n|σ − 2h), and given that σ ≥ 0, the smallest value of σ that
can be computed is σ = 2h.

B Single bin s + µ Poisson-gamma model

A special case of the Poisson-gamma model is obtained by writing s = εσ and dropping
the prior on ε. This model describes a counting experiment in which the parameter of
interest is not the cross section but rather the signal magnitude s. For this model, the
marginal likelihood is

p(n | s) =

∫
p(n | s, µ) π(µ | s) dµ,

=

∫
(s + µ)n

n!
e−s−µ b(bµ)y−1/2

Γ(y + 1/2)
e−bµ dµ,

=

[
b

b + 1

]y+ 1
2

n∑
k=0

vnk
sk

k!
e−s, (B.1)

where

vnk ≡
(

y − 1
2

+ n− k

n− k

) [
1

b + 1

]n−k

, (B.2)
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and for non-integral x, (
x + m

m

)
≡ Γ(x + m + 1)

Γ(x + 1) m!
. (B.3)

The associated Method-2 reference prior is

πR2(s) ∝

√√√√e−s

∞∑
n=0

[T 0
n − T 1

n/s]2

T 0
n

, (B.4)

where

Tm
n ≡

n∑
k=0

km vnk
sk

k!
for m = 0, 1. (B.5)

The subscript R2 refers to Method 2.

B.1 Algorithm for numerical calculation

The calculation of p(n|s) and Tm
n is most easily done using the recursive functions:

W0(s, z) = 1, for n > 0 and e−s for n = 0,

Wk(s, z) = z
( s

k

)
Wk−1 for k = 1, · · · , n,

Y0(z) = 1,

Yk(z) = z

(
y − 1

2
+ k

k

)(
1

b + 1

)
Yk−1, for k = 1, · · · , n.

(B.6)

We can then write

p(n | s) =

[
b

b + 1

]y+ 1
2

n∑
k=0

Wk(s, z) Yn−k(z), (B.7)

with z = e−s/n for n > 0 and z = 1 for n = 0, and

Tm
n =

n∑
k=0

km Wk(s, 1) Yn−k(1). (B.8)

Figure 4 compares the analytical result (B.4) with Bernardo’s algorithm and Jeffreys’
prior (equation 4.3). The three calculations agree.
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Figure 4: Method-2 calculations of the reference prior for the Poisson-gamma model
without the effective integrated luminosity parameter: Bernardo’s algorithm (circles), a
numerical approximation of Jeffreys’ prior (triangles), and an analytical formula (solid
line).
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